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Preferential growth: Exact solution of the time-dependent distributions
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We consider a preferential growth model where particles are added one by one to the system consisting of
clusters of particles. A new particle can either form a new clugtéth probability q) or join an already
existing cluster with a probability proportional to the size thereof. We calculate exactly the probaigikity)
that the size of théth cluster at timet is k. We analyze the asymptotics, the scaling properties of the size
distribution and of the mean size, as well as the relation of our system to recent network models.
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I. INTRODUCTION totics and scaling. In Sec. V we present a discussion of our
results. The paper concludes with two appendices containing
Nonuniform growth is inherently present in a broad classsome details of the calculations.

of phenomena including the development of biological popu-
lations, communication networks, or economic systems like Il. MODEL
incomes of persons or companids-7]. In many cases it is
obvious to assume that in a system consisting of groups or We model a growing system which consists of groups of
clusters of units the attachment of a new entity to one of thdlifferent sizes. At the beginning£1) we have one group
groups depends on the already achieved strength or size vfith one element in it. At each time step we add a new
that particular group. Simof#] analyzed a simple model of element to the system. With probabiliyit will belong to
this kind where the growth probability was proportional to one of the existing groups. The probability that it joins the
the cluster size and he gave exact results for the time inddth group is proportional to the size of the group/(N); see
pendent size distribution. Referring to the examples of word&ig. 1. (The number of elements is equal to the tirhest,
in a book or personal incomes Simon derived a power lawecause the system size is rising by one in each time)step.
distribution of cluster sizes. Recently, in the search for arWith probability g=1—p the new element will belong to a
explanation of the widely observed scale invariance of larggew group.
networks like the World Wide WelbWWW) [1-3], the In- The process can be described by the following master
ternet or power networkgs], and scientific citatio6], the  equation:
idea of preferential growth has been applied to evolving
graphg7]. It turned out that such graphs behave remarkably: (k—1) Kk
They have “small world” propertie$8] and the distribution ~ Pi(k,t)=p——7—Pi(k-1t-1)+ IO( 1- ﬁ) Pi(k,t—1)
of the strength of verticegnumber of edges from or to a

verteX is scale free, provided that the probability of linking +(1-p)Pi(kt—1)+(1—p)IL_4(t—1)

a vertex with a new one is proportional to its strenf@f

This class of models represent a new mechanism for “self- X o 1(1=6i4), N
organized criticality” [10]. The idea of preferential growth

seems to be essential in economic systems, too, where clus- PS

tering of companies, e.g., according to their market behavior,
follows such a patterfll].

These models have been treated by different tools includ- p
ing simulations, continuum or mean field theorjdg], and I-p
exact calculation§4,13] by which information has been ac-
cumulated about the asymptotic behavior and the time de- kz/N ZN k~/N
pendence of the global distribution functions. However, y !

-

much less attention has been paid to the full time-dependent ){/ \‘
solution of the problem. The aim of the present work is to
give such a solution of a particular model.
The paper is organized as follows. In Sec. Il we define the u Ce s \—‘ “ e ‘—I
model and the quantities of interest as well as we present the 1 i new

basic master equation. In Sec. Il the main steps of the full
time dependent analytic solution is given and the conse- FIG. 1. Demonstration of the model. The black point on the top
quences for the steady state and the integrated distributionrignotes the new incoming element, the boxes on the bottom are the
are drawn. Section IV contains the analysis about the asymproups.

1063-651X/2001/6&)/0511127)/$20.00 63051112-1 ©2001 The American Physical Society



L. KULLMANN AND J. KERTESZ PHYSICAL REVIEW E63 051112

where P;(k,t) is the probability that at time there arek 100 E PP
elements in the group andIl;(t) is the probability that at A simulation (;fg'g) E
time t there are groups in the system: 102F =02 - - _

t—1 . ‘ _4‘ p=0.9 —— —

Hi(t):(- )pt‘l‘("”(l—p)"l- @ =0F
i—1 Sl L
=
In the following we introduce some important quantities and
their definitions. ! sf
Given the size distribution of the individual groups, 0t e
P (k,t), the size distribution of the total system can be cal- el d
culated as their average: 1 10 11(;0 1000 10000
1 FIG. 2. Group size distribution in the asymptotic limit, for dif-
P(k,t)= =1 Z Pi(k,t). (3 ferentp values.
In the long time limit this quantity approximates to a station- L(K)T| 2+ E)
ary value:P(k)=Ilim;_, ., P(k,t). The mean of theth group P(k)= p 1—p ~ Kk 1-p, 7
size is rl ka1 Py e
+1+—
t—i+1
(ki) ()= k§=:1 kPi(k,t). (4 The stationary distribution of group size has a power-law

decay with an exponenty=1+1/p, depending on the pa-

The reason that the upper limit of the above sum is no{ameterp; see Fig. 2.

infinity is that P, (k,t)=0 if k>t—i+1. ) . o . o
B. Analytic solution for the individual group size distribution

1. ANALYTIC CALCULATIONS _ In the model the first group has an accentuated.rqlle since
it always has at least one element because of the initial con-
A. Asymptotic distribution of group size ditions. Therefore, Eq(1) for the first group (=1) has the

In the first step we calculate the group size distribution infollowing simpler form:

the asymptotic caseé?(k). The exact analytic formula for D

P(k) was already calculated in Refd] and[13]; we present Pi(k,t)=Py(k,t—1)— —k P;(k,t—1)
it here to see the dependence of the exponent on the param- t-1
eterp. P
If we sum up Eq.(1) fori=1...t, we get +ﬂ(k—1)7?1(k—1,t—1). (8

tP(k,t)=(t—1-pk)P(k,t—1)+p(k—1)P(k—1t—1)
P P Fork=1 in the above equation on the right-hand side the last

+(1-p)Ska, (5)  term vanishes so the probabili,(1t) can be calculated
easily:
since
I'(t—p)
t Pl(l,t)—m- 9

2 I, (t—1)(1—- 8 =1,

Fork>1 one can provésee Appendix Athat the following

. B equality holds:

> Pikt—1) E Pi(k,t—1)=(t—1)P(k,t—1).

. ' -1 I'(t—Ip)
=1 = _ k—1 — _
2 D (k—l)Pl("’t) rora-p 0

The stationary behavior ¢¥(k,t), mentioned in the previous
section, can be checked from E§). Replacing the station- The analytic form ofP,(k,t) can be| ffcelVed from Eq¢10)
ary quantityP(k) into Eq.(5), one gets by multlplylng both sides with ¢ 1)'~*(}~}) and summing
up forl= -k,
P(k)=—pkP(k) +p(k—1)P(k=1)+(1—-p) 1, (6) K
[ K—1) T(t—Ip)
Pl(k,o:gl U Forase @

which can be solved foP(k): 1)rMr(1-Ip)
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In the case of >1 we have to look at the whole Master Ed). In this case the equalitjd0) does not hold because of the last
factor in Eq.(1). Our assumption is that the probabiliB(k,t) will have a modified form:

P(k,t)

A
I'e Y

e (k=1Y T@—1p)
P"(k’t)_,; (-1 1(1—1) T(OI(1—Ip)

L D) (1-1p) e
“ T T-1p) (i—2>pb (1=p) ).

(12

The validity of the above form can be checked by replacing D. Time dependent solution for the group
it back in Eqg.(1); see Appendix B. size distribution P(k,t)

_ In Sec. Il A we calculated the stationary group size dis-
C. Mean value of group sizes tribution directly from the master equation. Now we are in-

Replacing the analytic formuldl?) into Eq.(4) one gets terested in its dynamics. In order to compute that, we start
from the definition(3) of P(k,t), and replace the solution we

t—i+1 k
(k-1 r'(t—Ip) got for P;(k,t) [Eq. (12)]:
(k). ()= > k2, (1) 1( )—_ |
k=1 =1 | rwra-Ip) k _
Pl=1 3 (~1) 1<k ) L)
L T(b)r(1-lp) (b=2) - Ve | T (1-1Ip)
X| D .o (A=p) .
=i I'(b—Ip) i—2 tot
“|1+(1-p3S S FIr-Ip)
(13 i=26=i  T'(b—Ip)
The two sums can be transposed, Ekl'”Ek _
—Et |+1EI I+1) and X i_2>pbi(1_p)i2:|- (15)
Y k-1 t—i+2
= )=
k=l -1 +1 Transposing the two sums}_,>}_;=3}_,3° ,, and tak-
so the mean value will have the following form: ing into account that
: = —1)-1 - 7
=2 UL Fora-Tp)

F(b)F(l—Ip) _I'(1-lp) I'(t+1) 1
(b—1Ip) (1+1p) T(t—Ip) 1+Ip’

t
2
I'(b)I'(1-1p) e P
bZi T(b—Ip) (i—z)p (1=py

(14 one finally arrives at the time dependent distribution:

l—p p+ip I'(e—1p)

1+lp 1+ip e+ 1)I(1=1Ip) |

k —
P(k,0) =2, (—D”(,_l

P(k,%)
(16)
|
In the long time limit we will get back our result) since the IV. ASYMPTOTIC CASES
second term if - - - ] decays for large values witht =1 7P,
and the sum transforms intg We study thet—oo limit of P;(k,t) and (k;)(t). In the
P(K, ) = 1-pI(KI'(2+1/p) analytic formula forP;(k,t), see Eq(12), there are two com-
’ 1+p I'(k+1+1/p) ° ponents A(l,p,t) andB(i,l,p,t), that depend on the time,
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t

k
, k—1 re—1 rp)r—ip)(b-2 .
Pik,t)=(1—=p)+ 3, (—1)’1< ) L) > Gl . b
=1 I-1) I'(I'(1=Ip) |7=: Tb-Ip) \i-2 (17)
A(I,P,t) B(l,l,p,t)
|
The limit of the first termA(l,p,t), can be easily calculated, i\P
lim Pi(k,t)=(f> . (19
ti—o»
1 :
lim A(l,p,t)= =———t"'P. To study the asymptotic behavior ¢f;)(t) we start from
t—e I'(1=lp) the fact, that for smalk values,k<t, the individual group

size distribution,P;(k,t), can be described by the first term
The second term in the long time lintit=i,1 will converge  of the sum, see Eq18), and for larger valueg=t it has a

to a hypergeometric suifii4]: fast decay; Fig. 4. A cutoff parametkt can be defined and
we can assume that E@}) transforms into
lim B(i,l,p,t)=B(i,l, x
g BLLPO=BLLP) ¢ k* (k* +1)
(k)= 2 kP(kD=P(1)————. (20
I(HI(1-1p) k=1 2
:WZH(H —L1ii—Ip;p). The definition ofk* can be done in many ways. We de-

finedk* as the inflection point of?;(k,t), hence

For large time values the only time dependent term in Eq. B(i,3p) T(1—4p)
_ p L bl

(17) will be t~'P which in case of large is a fast decaying K* =tP — +24+0(tP)
function ofl. So in the case dfsk we can assume that only B(i,4p) I'(1—3p)
the first term of the sum gives non-negligible component for . C o
Pi(k,t), i.e., distributions belonging to differektvalues will =tP F(f 4p) ZFl(f’! l’f 3p:p) +2+0(t7P).
decay with the same exponemtsee Fig. 3, I'(i—=3p) oF4(i,i—1ii—4p;p)
(21
. INQ))!
. - -1 . .
t'L":oPi(k’t)—t P(1-p)' T(i—p)2 Replacingk* into Eq. (20),
C “2p . T(i
APl I=Li=pp)+ 0. (19 <ki>(t):tp<1—p>'1F(i(_)p)zFl<i,i—1;i—p;p>

For Iargel values the. above fo_rmuI? Sln’.lp|IerS furthlejf be- T(i—4p) ,F(i,i—1:i—3p:p)]2
cause in that case lim..,F,(i,i—1;i—p;p)~(1—p)* ", T(=3p) JFa(i—1i—4pp) (22
and lim_.[T(i)/T(i—p)]=iP: P) 2Fa(li=L1=4p.p

For largei values the above formula gets a simpler form,

0
10 because in this case lim.[T(i)/T(i—p)]=iP,
_1_
10 5.10° . . . ———
- 000000000 . 1Py
& 107 410"} ° ! ]
N’ o ]
ar .t : ]
10°F Z 3100t ° -
=, L . i
= ol
107 2.10°T : T
10‘5 1 1 1 1 1 1 | 1 ] 10-5 r EO T
100 100 100 10 160 16 100 10 1 10 i . 1
. 0 1 1 1 1 1 1
time 0 10 100 10 10 e 0 10
k

FIG. 3. Asymptotic behavior oP;(k,t). We chose the param-
eters forp=0.5 andi=2. The figure demonstrates that in the long  FIG. 4. Distribution of individual group size in the long time
time limit the distributions for differenk values converge to P. limit (t=10%) as a function of the group size.

051112-4



PREFERENTIAL GROWTH: EXACT SOLUTION OF TH. .. PHYSICAL REVIEW E 63 051112

lim; ..[T(i—4p)/T(i—3p)]=i"", lim; .. oF 1 (i, i — 1 exponents depend on the parametéthe probability of cre-
—3p;p)=lim;_....F.(i,i—1;i—4p;p), lim, ...,F,(i,i—1; ating a new group It is worth mentioning that the examples
i—p:p)~(1—p)t, quoted in the introduction also show a wide variety of scal-
ing exponents. Further interesting study would be to analyze
a model where this parametgrdepends on the time of the
t\P growth.

(i_) (23 The system presented is not a network; the different
groups are not linked to each other. However, for a specific
value of the parametep= 0.5, it can be interpreted as a kind

V. DISCUSSION of mean field network model. The clusters then denote the

In this paper we presented a simple preferential groWthdifferent nodes, and the particles are the links. The value

model consisting of a system of clusters with different sizesP = 0-2 Méans that in average in every second time step one

We gave exact solutions for the main characteristic quantif€W 9roup and two elements are creaédthe odd time

ties as the distributiof(k,t) and the mean valugk;)(t) of steps the new element joins to an old group and in even time

the individual group size as well as for the distribution of theSteps It W'" create a new groiipThe new group is the new
average group sizB(k,t) node while the two new elements are the two ends of the new

The question rises why are such time dependent quantitid'K- c_JI_r;]e_ IS pointing to thed0|? nt?]deétheboth_,er is :o thlf ne\(/jv |
of interest since most of the asymptotic scaling behavior caffN€- 'NIS case corresponds 1o the barabast's network mode

be obtained with much less labor. In fact, the growth modeldVith Parametem=1 which means that the new node con-

and network usually provide only a background for somenects toone old sites. For this particular parameter choice

dynamic process—an aspect which has not yet been paf&“r results agr?g with them got for the Barapasi’s network
enough attention to. If there is a strong separation of timdnodel: P(k)~k™~, see Eq.(7), and (k;)(t)~ /i, see Eq.

scales, i.e., the growth is much smaller than the process i 23).
self, then it is satisfactory to concentrate on the asymptotics
only. This is probably the case with the Internet or the ACKNOWLEDGMENT
WWW. However, in some cases such a separation of scales
could be approximate only or even missing and then the This research was supported by OTKA T029985. Thanks
importance of the full time dependence becomes apparerire due to A. L. Barats and K. Sneppen for discussions.
We expect that in certain economic processes this will be the
case. , o APPENDIX A:
An important aspect of the asymptotic scaling is univer-
sality. Similarly to other preferential growth models, our sys- We prove the assumptiofi0). If one multiplies Eq.(8)
tem exhibits nonuniversal parameter dependent scaling: they (—1)"‘1(L111) and sums it up fok=1---1 one gets

(ki)(t) ~

— 0

1 ! (11
) Pl(k,t)zkzl(—n (k_l Pi(k,t—1)

! !
k-1
1;1 (=1 (k

! !
p (-1 {1
e Lzl (— 1)k 1<k_1>k7?1(k,t—1)—kzl (—1)F 1<k—1>(k_1)7)1(k_1’t_1)}’

(A1)
X y
|
where in the first terngx) we detach the last term of the sum: | _
y=> (—1)“('(_ )(k—l)Pl(k—l,t—l)
k=2 1
1-1
-1 -1
- _1)k-1 _ B -1
x=Z, (-1 k(k—l)Pl(k’t Y =-3 (-1 1(|—k)(k_1)7)1<k,t—1>, (A3)
+(—1)"UP(1,t-1). (A2)
|
N - -1
Taking into account thati{ ) =[ (I —k)/k](}_}) the second e k-1 i1 Al
term (y) can be rewritten as Xy k§=:1( ) k—1 Pilkt=1). (A4)
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Replacing the difference—y back to Eq.(Al) one gets the The first term of the right-hand side becomes
time evolution of the sum:

| 1 t_t—_pP(kt 1)
> (—1)"‘1( )Pl(kt)
k=1 k—1
| (1) 1F(t—kp) I'(b) [b=2} .
_t-1-1Ip (-1 L ') 5= I'(b—kp)
— k; (k 1>7>1(kt 1), -
t—1—|<p2 Lt k—1\ T(t—1—1Ip)
(A5) + t—1 |:1(_ ) -1 ri—-1)
which leads back to our assumpti@t0). El I'(b) (b—Z) b B2
APPENDIX B: 6= T(b=Ip)ti=2/" .

We prove the formulg12) for Pi(k,t) in the case of  Taking into account that k- 1)(23)=(k=1) (I}, the
>1, by replacing it into Eq(1). The left-hand side of the gecond term will be
equation after detaching the last tertw<t) of the sum be-

comes (kt_ P (k- 14-1)
y 2 |1(k 1)( 2) i
Pik,t)=2, (—1) 11liZoP P k=1 - k—1\ I'(t—1—1Ip)
=1 2 (~D' k=D T
t—1 5 I-1) T(t—-1)
+> —1)"1( _1) _tele)
& ¢ I-1) T(OT(1—Ip) & r (b-2)
> T(b—lp) | (B3)
x§ r(b)r(l—lp)( ) - (e =
=i I'(b—Ip) \i-2 o (BY) The sum of Eqs(B2) and (B3) will be
t_tl—_ka(kt—l)+(_—)pP(k 1t-1)
I'(t—kp) I'(b) /b—) K2 ( )F(t—lp) L'(b) (b—2) .
—(_ k—1 b—i -1 b—i
U T bE toli-2/” A Y ) T & Tem i 2P

« k—1| T(t—Ip)'=t ~
:2(_1)|_1(| 1) Fi-lpy _Tb) (b-2) oo

(M) ¢ Tb=Ip) (i-2)°
which will be equal to the second term of BE®1). Simplifying with this term we get the remaining equation:

t—2 K k—1\ [t—2\
T L e N

which is true, because the sum equéls .
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