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Preferential growth: Exact solution of the time-dependent distributions
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We consider a preferential growth model where particles are added one by one to the system consisting of
clusters of particles. A new particle can either form a new cluster~with probability q) or join an already
existing cluster with a probability proportional to the size thereof. We calculate exactly the probabilityPi(k,t)
that the size of thei th cluster at timet is k. We analyze the asymptotics, the scaling properties of the size
distribution and of the mean size, as well as the relation of our system to recent network models.
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I. INTRODUCTION

Nonuniform growth is inherently present in a broad cla
of phenomena including the development of biological po
lations, communication networks, or economic systems
incomes of persons or companies@1–7#. In many cases it is
obvious to assume that in a system consisting of group
clusters of units the attachment of a new entity to one of
groups depends on the already achieved strength or siz
that particular group. Simon@4# analyzed a simple model o
this kind where the growth probability was proportional
the cluster size and he gave exact results for the time in
pendent size distribution. Referring to the examples of wo
in a book or personal incomes Simon derived a power
distribution of cluster sizes. Recently, in the search for
explanation of the widely observed scale invariance of la
networks like the World Wide Web~WWW! @1–3#, the In-
ternet or power networks@5#, and scientific citation@6#, the
idea of preferential growth has been applied to evolv
graphs@7#. It turned out that such graphs behave remarkab
They have ‘‘small world’’ properties@8# and the distribution
of the strength of vertices~number of edges from or to
vertex! is scale free, provided that the probability of linkin
a vertex with a new one is proportional to its strength@9#.
This class of models represent a new mechanism for ‘‘s
organized criticality’’ @10#. The idea of preferential growth
seems to be essential in economic systems, too, where
tering of companies, e.g., according to their market behav
follows such a pattern@11#.

These models have been treated by different tools inc
ing simulations, continuum or mean field theories@12#, and
exact calculations@4,13# by which information has been ac
cumulated about the asymptotic behavior and the time
pendence of the global distribution functions. Howev
much less attention has been paid to the full time-depen
solution of the problem. The aim of the present work is
give such a solution of a particular model.

The paper is organized as follows. In Sec. II we define
model and the quantities of interest as well as we presen
basic master equation. In Sec. III the main steps of the
time dependent analytic solution is given and the con
quences for the steady state and the integrated distribu
are drawn. Section IV contains the analysis about the asy
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totics and scaling. In Sec. V we present a discussion of
results. The paper concludes with two appendices contain
some details of the calculations.

II. MODEL

We model a growing system which consists of groups
different sizes. At the beginning (t51) we have one group
with one element in it. At each time step we add a n
element to the system. With probabilityp it will belong to
one of the existing groups. The probability that it joins t
i th group is proportional to the size of the group (ki /N); see
Fig. 1. ~The number of elements is equal to the time,N5t,
because the system size is rising by one in each time s!
With probability q512p the new element will belong to a
new group.

The process can be described by the following mas
equation:

Pi~k,t !5p
~k21!

t21
Pi~k21,t21!1pS 12

k

t21DPi~k,t21!

1~12p!Pi~k,t21!1~12p!P i 21~ t21!

3dk,1~12d i ,1!, ~1!

FIG. 1. Demonstration of the model. The black point on the t
denotes the new incoming element, the boxes on the bottom ar
groups.
©2001 The American Physical Society12-1
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where Pi(k,t) is the probability that at timet there arek
elements in the groupi, andP i(t) is the probability that at
time t there arei groups in the system:

P i~ t !5S t21

i 21D pt212( i 21)~12p! i 21. ~2!

In the following we introduce some important quantities a
their definitions.

Given the size distribution of the individual group
Pi(k,t), the size distribution of the total system can be c
culated as their average:

P~k,t !5
1

t (
i 51

t

Pi~k,t !. ~3!

In the long time limit this quantity approximates to a statio
ary value:P(k)5 limt→` P(k,t). The mean of thei th group
size is

^ki&~ t !5 (
k51

t2 i 11

k Pi~k,t !. ~4!

The reason that the upper limit of the above sum is
infinity is that Pi(k,t)50 if k.t2 i 11.

III. ANALYTIC CALCULATIONS

A. Asymptotic distribution of group size

In the first step we calculate the group size distribution
the asymptotic case,P(k). The exact analytic formula fo
P(k) was already calculated in Refs.@4# and@13#; we present
it here to see the dependence of the exponent on the pa
eterp.

If we sum up Eq.~1! for i 51 . . . t, we get

t P~k,t !5~ t212pk!P~k,t21!1p~k21!P~k21,t21!

1~12p!dk,1 , ~5!

since

(
i 51

t

P i 21~ t21!~12d i ,1!51,

(
i 51

t

Pi~k,t21!5(
i 51

t21

Pi~k,t21!5~ t21!P~k,t21!.

The stationary behavior ofP(k,t), mentioned in the previous
section, can be checked from Eq.~5!. Replacing the station
ary quantityP(k) into Eq. ~5!, one gets

P~k!52pkP~k!1p~k21!P~k21!1~12p!dk,1 , ~6!

which can be solved forP(k):
05111
-

-

t

m-

P~k!5

G~k!GS 21
1

pD
GS k111

1

pD
12p

11p
;

k→`

k2121/p. ~7!

The stationary distribution of group size has a power-l
decay with an exponent,g5111/p, depending on the pa
rameterp; see Fig. 2.

B. Analytic solution for the individual group size distribution

In the model the first group has an accentuated role s
it always has at least one element because of the initial c
ditions. Therefore, Eq.~1! for the first group (i 51) has the
following simpler form:

P1~k,t !5P1~k,t21!2
p

t21
k P1~k,t21!

1
p

t21
~k21!P1~k21,t21!. ~8!

For k51 in the above equation on the right-hand side the
term vanishes so the probabilityP1(1,t) can be calculated
easily:

P1~1,t !5
G~ t2p!

G~ t !G~12p!
. ~9!

For k.1 one can prove~see Appendix A! that the following
equality holds:

(
k51

l

~21!k21S l 21

k21DP1~k,t !5
G~ t2 lp !

G~ t !G~12 lp !
. ~10!

The analytic form ofP1(k,t) can be received from Eq.~10!
by multiplying both sides with (21)l 21( l 21

k21) and summing
up for l 51•••k,

P1~k,t !5(
l 51

k

~21! l 21S k21

l 21 D G~ t2 lp !

G~ t !G~12 lp !
. ~11!

FIG. 2. Group size distribution in the asymptotic limit, for di
ferentp values.
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In the case ofi .1 we have to look at the whole Master Eq.~1!. In this case the equality~10! does not hold because of the la
factor in Eq.~1!. Our assumption is that the probabilityPi(k,t) will have a modified form:

~12!
in

is-
n-
tart
e

The validity of the above form can be checked by replac
it back in Eq.~1!; see Appendix B.

C. Mean value of group sizes

Replacing the analytic formula~12! into Eq. ~4! one gets

^ki&,~ t !5 (
k51

t2 i 11

k(
l 51

k

~21! l 21S k21

l 21 D G~ t2 lp !

G~ t !G~12 lp !

3F(
b5 i

t
G~b!G~12 lp !

G~b2 lp ! S b22

i 22 D pb2 i~12p! i 21G .

~13!

The two sums can be transposed, ((k51
t2 i 11( l 51

k

5( l 51
t2 i 11(k5 l

t2 i 11) and

(
k5 l

t2 i 11

kS k21

l 21 D 5 l S t2 i 12

l 11 D ,

so the mean value will have the following form:

^ki&~ t !5 (
l 51

t2 i 11

~21! l 21l S t2 i 12

l 11 D G~ t2 lp !

G~ t !G~12 lp !

3(
b5 i

t
G~b!G~12 lp !

G~b2 lp ! S b22

i 22 D pb2 i~12p! i 21.

~14!
05111
g D. Time dependent solution for the group
size distribution P„k,t…

In Sec. III A we calculated the stationary group size d
tribution directly from the master equation. Now we are i
terested in its dynamics. In order to compute that, we s
from the definition~3! of P(k,t), and replace the solution w
got for Pi(k,t) @Eq. ~12!#:

P~k,t !5
1

t (
l 51

k

~21! l 21 S k21

l 21 D G~ t2 lp !

G~ t !G~12 lp !

3F11~12p!(
i 52

t

(
b5 i

t
G~b!G~12 lp !

G~b2 lp !

3S b22

i 22 D pb2 i~12p! i 22G . ~15!

Transposing the two sums( i 52
t (b5 i

t 5(b52
t ( i 52

b , and tak-
ing into account that

(
b52

t
G~b!G~12 lp !

G~b2 lp !
5

G~12 lp !

~11 lp !

G~ t11!

G~ t2 lp !
2

1

11 lp
,

one finally arrives at the time dependent distribution:
~16!
In the long time limit we will get back our result~7! since the
second term in@•••# decays for larget values witht212 lp,
and the sum transforms into

P~k,`!5
12p

11p

G~k!G~211/p!

G~k1111/p!
.

IV. ASYMPTOTIC CASES

We study thet→` limit of Pi(k,t) and ^ki&(t). In the
analytic formula forPi(k,t), see Eq.~12!, there are two com-
ponents,A( l ,p,t) andB( i ,l ,p,t), that depend on the time,
2-3
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The limit of the first term,A( l ,p,t), can be easily calculated

lim
t→`

A~ l ,p,t !5
1

G~12 lp !
t2 lp.

The second term in the long time limitt@ i ,l will converge
to a hypergeometric sum@14#:

lim
t→`

B~ i ,l ,p,t !5B̃~ i ,l ,p!

5
G~ i !G~12 lp !

G~ i 2 lp ! 2F1~ i ,i 21;i 2 lp;p!.

For large time values the only time dependent term in
~17! will be t2 lp which in case of larget is a fast decaying
function of l. So in the case oft@k we can assume that onl
the first term of the sum gives non-negligible component
Pi(k,t), i.e., distributions belonging to differentk values will
decay with the same exponentp; see Fig. 3,

lim
t→`

Pi~k,t !5t2p~12p! i 21
G~ i !

G~ i 2p! 2

3F1~ i ,i 21;i 2p;p!1O~ t22p!. ~18!

For largei values the above formula simplifies further, b
cause in that case limi→` 2F1( i ,i 21;i 2p;p);(12p)12 i ,
and limi→`@G( i )/G( i 2p)#5 i p:

FIG. 3. Asymptotic behavior ofPi(k,t). We chose the param
eters forp50.5 andi 52. The figure demonstrates that in the lon
time limit the distributions for differentk values converge tot2p.
05111
.

r

lim
t,i→`

Pi~k,t !5S i

t D
p

. ~19!

To study the asymptotic behavior of^ki&(t) we start from
the fact, that for smallk values,k!t, the individual group
size distribution,Pi(k,t), can be described by the first term
of the sum, see Eq.~18!, and for larger valuesk*t it has a
fast decay; Fig. 4. A cutoff parameterk* can be defined and
we can assume that Eq.~4! transforms into

^ki&~ t !'(
k51

k*

k Pi~k,t !5Pi~1,t !
k* ~k* 11!

2
. ~20!

The definition ofk* can be done in many ways. We de
fined k* as the inflection point ofPi(k,t), hence

k* 5tp
B̃~ i ,3,p!

B̃~ i ,4,p!

G~124p!

G~123p!
121O~ t2p!

5tp
G~ i 24p!

G~ i 23p!
2F1~ i ,i 21;i 23p;p!

2F1~ i ,i 21;i 24p;p!
121O~ t2p!.

~21!

Replacingk* into Eq. ~20!,

^ki&~ t !.tp~12p! i 21
G~ i !

G~ i 2p! 2F1~ i ,i 21;i 2p;p!

3FG~ i 24p!

G~ i 23p!
2F1~ i ,i 21;i 23p;p!

2F1~ i ,i 21;i 24p;p!G
2

. ~22!

For large i values the above formula gets a simpler for
because in this case limi→`@G( i )/G( i 2p)#5 i p,

FIG. 4. Distribution of individual group size in the long tim
limit ( t5109) as a function of the group size.
2-4
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PREFERENTIAL GROWTH: EXACT SOLUTION OF THE . . . PHYSICAL REVIEW E 63 051112
lim i→`@G( i 24p)/G( i 23p)#5 i 2p, limi→` 2F1( i ,i 21;i
23p;p)5 lim i→` 2F1( i ,i 21;i 24p;p), limi→` 2F1( i ,i 21;
i 2p;p);(12p)12 i ,

^ki&~ t ! '
i→`

S t

i D
p

. ~23!

V. DISCUSSION

In this paper we presented a simple preferential gro
model consisting of a system of clusters with different siz
We gave exact solutions for the main characteristic qua
ties as the distributionPi(k,t) and the mean valuêki&(t) of
the individual group size as well as for the distribution of t
average group sizeP(k,t).

The question rises why are such time dependent quant
of interest since most of the asymptotic scaling behavior
be obtained with much less labor. In fact, the growth mod
and network usually provide only a background for so
dynamic process—an aspect which has not yet been
enough attention to. If there is a strong separation of ti
scales, i.e., the growth is much smaller than the proces
self, then it is satisfactory to concentrate on the asympto
only. This is probably the case with the Internet or t
WWW. However, in some cases such a separation of sc
could be approximate only or even missing and then
importance of the full time dependence becomes appar
We expect that in certain economic processes this will be
case.

An important aspect of the asymptotic scaling is univ
sality. Similarly to other preferential growth models, our sy
tem exhibits nonuniversal parameter dependent scaling:
:
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exponents depend on the parameterq ~the probability of cre-
ating a new group!. It is worth mentioning that the example
quoted in the introduction also show a wide variety of sc
ing exponents. Further interesting study would be to anal
a model where this parameterq depends on the time of th
growth.

The system presented is not a network; the differ
groups are not linked to each other. However, for a spec
value of the parameter,p50.5, it can be interpreted as a kin
of mean field network model. The clusters then denote
different nodes, and the particles are the links. The va
p50.5 means that in average in every second time step
new group and two elements are created~in the odd time
steps the new element joins to an old group and in even t
steps it will create a new group!. The new group is the new
node while the two new elements are the two ends of the n
link, one is pointing to the old node, the other is to the n
one. This case corresponds to the Barabasi’s network m
with parameterm51 which means that the new node co
nects toone old sites. For this particular parameter choi
our results agree with them got for the Barabasi’s netw
model: P(k);k23, see Eq.~7!, and ^ki&(t);At/ i , see Eq.
~23!.
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APPENDIX A:

We prove the assumption~10!. If one multiplies Eq.~8!
by (21)k21( k21

l 21 ) and sums it up fork51••• l one gets
~A1!
where in the first term~x! we detach the last term of the sum

x5 (
k51

l 21

~21!k21kS l 21

k21DP1~k,t21!

1~21! l 21lP1~ l ,t21!. ~A2!

Taking into account that (k
l 21)5@( l 2k)/k#( k21

l 21 ) the second
term ~y! can be rewritten as
y5 (
k52

l

~21!k21S l 21

k21D ~k21!P1~k21,t21!

52 (
k51

l 21

~21!k21~ l 2k!S l 21

k21DP1~k,t21!, ~A3!

x2y5 l (
k51

l

~21!k21S l 21

k21DP1~k,t21!. ~A4!
2-5
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Replacing the differencex2y back to Eq.~A1! one gets the
time evolution of the sum:

(
k51

l

~21!k21S l 21

k21DP1~k,t !

5
t212 lp

t21 (
k51

l

~21!k21S l 21

k21DP1~k,t21!,

~A5!

which leads back to our assumption~10!.

APPENDIX B:

We prove the formula~12! for Pi(k,t) in the case ofi
.1, by replacing it into Eq.~1!. The left-hand side of the
equation after detaching the last term (b5t) of the sum be-
comes

Pi~k,t !5(
l 51

k

~21! l 21 S k21

l 21 D S t22

i 22D pt2 i

1(
l 51

k

~21! l 21 S k21

l 21 D G~ t2 lp !

G~ t !G~12 lp !

3(
b5 i

t21
G~b!G~12 lp !

G~b2 lp ! S b22

i 22 D pb2 i . ~B1!
05111
The first term of the right-hand side becomes

t212kp

t21
Pi~k,t21!

5~21!k21
G~ t2kp!

G~ t ! (
b5 i

t21
G~b!

G~b2kp! S b22

i 22 D pb2 i

1
t212kp

t21 (
l 51

k21

~21! l 21 S k21

l 21 D G~ t212 lp !

G~ t21!

3(
b5 i

t21
G~b!

G~b2 lp !S b22

i 22 D pb2 i , ~B2!

Taking into account that (k21)( l 21
k22)5(k2 l )( l 21

k21), the
second term will be

~k21!p

t21
Pi~k21,t21!

5
p

t21 (
l 51

k21

~21! l 21~k2 l ! S k21

l 21 D G~ t212 lp !

G~ t21!

3(
b5 i

t21
G~b!

G~b2 lp ! S b22

i 22 D pb2 i . ~B3!

The sum of Eqs.~B2! and ~B3! will be
t212kp

t21
Pi~k,t21!1

~k21!p

t21
Pi~k21,t21!

5~21!k21
G~ t2kp!

G~ t ! (
b5 i

t21
G~b!

G~b2kp!S b22

i 22 D pb2 i1 (
l 51

k21

~21! l 21S k21

l 21 D G~ t2 lp !

G~ t ! (
b5 i

t21
G~b!

G~b2 lp !

~b22!

~ i 22!
pb2 i

5(
l 51

k

~21! l 21S k21

l 21 D G~ t2 lp !

G~ t ! (
b5 i

t21
G~b!

G~b2 lp !

~b22!

~ i 22!
pb2 i , ~B4!

which will be equal to the second term of Eq.~B1!. Simplifying with this term we get the remaining equation:

S t22

i 22D pt2 i (
l 51

k

~21! l 21S k21

l 21 D 5S t22

i 22D pt2 idk,1 , ~B5!

which is true, because the sum equalsdk,1 .
om-

ett.
@1# R. Albert, H. Jeong, and A. L. Baraba´si, Nature~London! 401,
130 ~1999!.

@2# A. L. Barabási and R. Albert, Science286, 509 ~1999!.
@3# B. A. Huberman and L. A. Adamic, Nature~London! 401, 131

~1999!.
@4# H. A. Simon, Biometrika42, 425~1955!; S. N. Dorogovtsev, J.

F. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett.85, 4633
~2000!.
@5# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. C
mun. Rev.29, 251 ~1999!.

@6# S. Redner, Eur. Phys. J. B4, 131 ~1998!.
@7# A. L. Barabási, Nature~London! ~to be published!.
@8# The Small World, edited by M. Kocher~Ablex, Norwood, NJ,

1989!; S. Milgram, Psychology Today2, 60 ~1967!; D. J.
Watts and S. H. Strogatz, Nature~London! 393, 440 ~1998!.

@9# P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. L
2-6



f
ur
le
s
-
th
tia
tic

in,
es,

PREFERENTIAL GROWTH: EXACT SOLUTION OF THE . . . PHYSICAL REVIEW E 63 051112
85, 4629~2000!.
@10# P. Bak,How Nature Works~Copernicus, New York, 1996!; H.

J. Christensen,Self-Organized Criticality~Cambridge Univer-
sity Press, Cambridge, England, 1998!. Since the absence o
characteristic sizes occurs in preferential growth at a nat
choice of the parameters it can be considered as an examp
self-organized criticality~SOC!. Of course, the mechanism i
totally different from that of the ‘‘sand pile models.’’ A simi
larity with the usual SOC models is that change in some of
model parameters leads out of criticality, e.g., the preferen
growth with a nonlinear probability introduces a characteris
05111
al
of

e
l

size @9#.
@11# N. Kiyotaki and R. Wright, American Economic Review83,

63 ~1993!.
@12# A. L. Barabási, R. Albert, and H. Jeong, Physica A272, 173

~1999!.
@13# S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukh

cond-mat/0011115; S. N. Dorogovtsev and J. F. F. Mend
cond-mat/0012009.

@14# A. Erdélyi, Higher Transcendental Functions~McGraw-Hill
Book Co., New York, 1953!.
2-7


